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Importance sampling and theory of nonequilibrium solvation
dynamics in water

Phillip L. Geissler and David Chandlera)

Department of Chemistry, University of California, Berkeley, California 94720

~Received 5 May 2000; accepted 10 July 2000!

We have devised a novel importance sampling method for nonequilibrium processes. Like transition
path sampling, the method employs a Monte Carlo procedure to confine or bias the search through
trajectory space. In this way, molecular dynamics trajectories consistent with the nonequilibrium
dynamics of interest are generated efficiently. Using results of this sampling, we demonstrate that
statistics of the energy gap between a solute’s electronic states are Gaussian throughout the
dynamics of nonequilibrium solvation in water. However, these statistics do change in time,
reflecting linear response that is nonstationary. Discrepancies observed between the dynamics of
nonequilibrium relaxation and of equilibrium fluctuations are thus explained. We analyze a simple
Gaussian field theory that accounts for this nonstationary response. ©2000 American Institute of
Physics.@S0021-9606~00!52137-0#

I. INTRODUCTION

This article describes a method for carrying out impor-
tance sampling of nonequilibrium trajectories. It thus shows
how biasing techniques commonly employed in the realm of
equilibrium statistics, such as umbrella sampling, can be ex-
tended to the dynamical realm. The method we present may
be applied to any nonequilibrium process for which a distri-
bution of initial conditions is known. An important class of
such processes is the relaxation following a sudden change in
the Hamiltonian of a system that is initially at equilibrium.

In developing this sampling technique, we are motivated
by an interest in the specific nonequilbrium phenomenon
known as solvation dynamics,1,2 and it is with this process
that we illustrate our general approach. A solvation dynamics
experiment measures the response of a polar solvent to an
electronic transition of a solute. Because such transitions
typically involve changes in the solute’s charge distribution,
surrounding solvent molecules are subject to large net forces
and reorganize quickly. The dynamics of this response is
monitored through a function

S~ t ![
DE~ t !2DE~`!

DE~0!2DE~`!
. ~1!

Here, DE is the energy gap between ground and excited
states, determined experimentally by fluorescence
spectroscopy.3,4 Overbars denote a nonequilibrium average,
i.e., a Boltzmann-weighted sum over initial conditions with
the solute in its ground state and with dynamics evolved in
the excited state.S(t) thus measures the normalized relax-
ation of the energy gap to its new equilibrium value,DE(`).

Remarkably, it has been observed in molecular dynamics
simulations thatS(t) is often nearly identical to an equilib-
rium time correlation function:4,5

C~ t ![
^dDE~ t ! dDE~0!&

^~dDE!2&
. ~2!

Here, angled brackets denote an equilibrium average with the
solute in either its ground or excited electronic state.dDE is
the fluctuation of the energy gap away from its average value
at equilibrium, i.e.,dDE[DE2^DE&. The near equivalence
of nonequilibrium relaxation dynamics and those of equilib-
rium fluctuations suggests that linear response is approxi-
mately valid for these solutions. Furthermore, the statistics of
the energy gap at equilibrium, as determined by importance
sampling in computer simulations, are remarkably
Gaussian.6 The corresponding harmonic free energy also
suggests the validity of linear response. Until now, the sta-
tistics of the energy gap during nonequilibrium relaxation
have not been determined by importance sampling. Conse-
quently, these time-dependent distributions have been com-
puted only for small fluctuations of the energy gap away
from its mean.7

Although linear response appears to describe solvation
dynamics for some systems, several workers have noted that
S(t) can differ significantly fromC(t) for others,8–10 par-
ticularly those involving hydrogen-bonding solvents. A ma-
jor conclusion of our work is that these differences are not
necessarily due to a failure of linear response or of Gaussian
statistics. Indeed, as we show explicitly for a model exam-
ined by Skaf and Ladanyi,8 nonequilibrium relaxation is gov-
erned largely by Gaussian statistics, but these statistics are
not stationary. To an excellent approximation, it is the devia-
tion from stationarity that produces the differences between
S(t) andC(t).

In determining the statistics of the energy gap during
solvent response, we make use of an importance sampling in
trajectory space. The method is analogous to transition path
sampling of rare but important events, in that trajectories are
harvested using a Monte Carlo procedure, as described in
Sec. II. In this procedure, trajectories are displaced by chang-a!Electronic mail: chandler@cchem.berkeley.edu
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ing atomic momenta at a particular time and integrating
equations of motion to obtain a different but similar path.
Trial paths so obtained are accepted with a probability that
reproduces a desired distribution of trajectories. This scheme
thus allows a bias or constraint to be applied to thesampling
of trajectories evolving in time with the system’s natural,
unbiased dynamics. Using such constraints, we compute the
probability of observing energy gap values over a wide range
during nonequilibrium relaxation.

The distributions of the energy gap we determine, also
described in Sec. II, are remarkably Gaussian throughout the
solvation dynamics. The principal conclusions we draw from
this fact can be captured by a simple Gaussian field theory,
as illustrated in Sec. III. In this theory, the solvent environ-
ment is represented as a coarse-grained dielectric material,
except where hydrogen bonds are formed to a solute. In such
regions, the polarization oscillates in a harmonic potential
that simulates these strong interactions. Upon solute excita-
tion, the boundaries of linearly responding solvent regions
change, so that the normal modes of solvent response are
nonstationary.

II. NONEQUILIBRIUM MOLECULAR DYNAMICS

A. Sampling trajectories

The nonequilibrium average of the energy gap during
relaxation to equilibrium may be computed using straightfor-
ward molecular dynamics. Long equilibrium trajectories with
the solute in its ground electronic state are first used to gen-
erate initial configurations. For each configuration, the solute
charge distribution is then switched instantaneously, and the
energy gap is calculated as the solvent relaxes to equilibrium
with the new electric field. Averaging over many of these
trajectories yieldsDE(t). Using this scheme, we have repro-
duced the results of Skaf and Ladanyi for a dipolar diatomic
in liquid water whose ground and excited states are related
by dipole inversion. The details of our simulations are nearly
identical to those in Ref. 8 for a small solute~with opposite
charges of 0.5e separated by;3.1 Å! in TIP4P water. Both
S(t) and C(t) are plotted in Fig. 1. Nonequilibrium relax-
ation indeed occurs much more quickly than is predicted by
the dynamics of equilibrium fluctuations.

The above scheme of harvesting nonequilibrium trajec-
tories does not allow efficient calculation of the distribution
of energy gaps,P@DE(t)#. In particular, only the most prob-
able values ofDE(t) are sampled frequently, while values
lying in the wings of the distribution are rarely observed. In
sampling the corresponding equilibrium distribution,
P@DE(0)#, this problem may be overcome by umbrella sam-
pling. An artificial potentialf(DE) is introduced, favoring
improbable values ofDE, so that the range of energy gaps is
sampled with nearly even probability. Correcting for the bias
imposed byf(DE) simply involves multiplication by a
Boltzmann factor, exp@b„f(DE)…#, whereb215kBT is tem-
perature multiplied by Boltzmann’s constant. In practice,
umbrella sampling is often accomplished by dividing the
range ofDE into overlapping windows. The distribution of
DE is measured in each window, and the entire distribution
is constructed by requiring thatP@DE(0)# is continuous.

Such an umbrella potential does not, however, directly
aid in the calculation of the nonequilibrium distribution. The
artificial force that is introduced byf(DE) alters the dynam-
ics of relaxation, and correcting for this effect is not straight-
forward. Rather than apply such a physical bias force to the
system, we instead perform umbrella sampling in trajectory
space in a manner analogous to the window sampling de-
scribed above. The range of energy gaps at timet is divided
into overlapping windows, defined by intervalsDEmin

(i)

,DE(t),DEmax
(i) . By computingP@DE(t)# in each window

and requiring that the distribution is continuous at the win-
dow boundaries, we may efficiently sample a wide range of
DE(t).

We harvest nonequilibrium trajectories in each window
in a Monte Carlo fashion, as is done in transition path sam-
pling of rare but important events.11–13 Specifically, a trial
trajectory is generated from an existing one and is accepted
with a probability determined by the relative weight of the
two trajectories. In detail, the weight of a trajectory in win-
dow i is

f ( i )~x0!}e2bHg~x0!h( i )@DE~ t !# ~3!

}e2bHe~x0!ebDE(0)h( i )@DE~ t !#. ~4!

Here,Hg(x0) andHe(x0) are Hamiltonians with the solute in
its ground and excited electronic states, respectively.
h( i )@DE(t)# is the characteristic function for windowi:

h( i )@DE~ t !#5H 1, if DEmin
( i ) ,DE~ t !,DEmax ,

( i )

0, otherwise. ~5!

In Eq. ~4!, xt denotes the phase space point of the system at
time t. Because the molecular dynamics we consider are
Newtonian, the initial phase space pointx0 determines the
state of the system at all later times. The trajectory weight
f ( i ) is thus written as a function solely ofx0 .

To sample trajectories consistent with the weight in Eq.
~4!, it is sufficient to satisfy the condition of detailed balance,

FIG. 1. Nonequilibrium responseS(t) ~solid line! and equilibrium time
correlationC(t) ~dashed line! as functions of timet for a dipolar solute in
water.S(t) was computed from 5000 nonequilibrium molecular dynamics
trajectories.C(t) was computed from a single, 1 ns trajectory at equilibrium.
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Pgen~x0
o→x0

n!Pacc~x0
o→x0

n! f ( i )~x0
o!

5Pgen~x0
n→x0

o!Pacc~x0
n→x0

o! f ( i )~x0
n!. ~6!

Here, Pgen(x0
o→x0

n) is the probability of generating a trial
trajectory with initial conditionsx0

n from an old trajectory
with initial conditions x0

o . Pacc(x0
o→x0

n) is the probability
that this new trajectory will be accepted. We use the Me-
tropolis acceptance probability,

Pacc~x0
o→x0

n!5minF1,
f ( i )~x0

n!

f ( i )~x0
o!

Pgen~x0
n→x0

o!

Pgen~x0
o→x0

n!
G , ~7!

which satisfies detailed balance by construction and does not
require knowledge of the proportionality constant in Eq.~4!.

In our Monte Carlo sampling, new trajectories are gen-
erated from old ones by an effective displacement in trajec-
tory space, using shooting moves similar to those described
in Ref. 14. A time step along the existing path is first chosen
at random. The momentum of each atom is shifted at that
time step by an amountdpi . Equations of motion are then
integrated forwards and backwards in time, yielding a dis-
tinct trial path.

In the present work, the trajectories of interest are only
tens of femtoseconds in duration.@The deviation ofS(t)
from C(t) is greatest at these times.# Consequently, large
momentum displacements are necessary to generate trial tra-
jectories that are not too similar to existing ones. If thedpi

are too small, sampling of statistically independent trajecto-
ries will occur slowly. However, if largedpi are drawn from
a symmetric distribution, high kinetic energies will often re-
sult. Trial paths will then be frequently rejected due to small
values of exp@2bHe(x0

n)#. We avoid this sampling problem
by effectively selecting thedpi from an asymmetric distribu-
tion, as described in the Appendix. The corresponding path
generation probabilities automatically reproduce a Boltz-
mann distribution of initial conditions:

Pgen~x0
o→x0

n!

Pgen~x0
n→x0

o!
5exp@2b@He~x0

n!2He~x0
o!##. ~8!

Trial paths must therefore be accepted according to

Pacc~x0
o→x0

n!5min@1,eb@DEn~0!2DEo~0!#h~ i !@DEn~ t !#.
~9!

Here, DEn(0) andDEo(0) denote the energy gaps at time
zero for the new and old trajectories, respectively. We have
assumed thath( i )@DEo(t)#51, i.e., that the initial path lies
within window i.

In practice, this sampling of nonequilibrium paths fol-
lows a simple algorithm. From an existing path, momenta are
displaced at a randomly selected time, and a trial trajectory is
obtained by integrating equations of motion. By Eq.~9!, the
trajectory is rejected if a random number between 0 and 1 is
smaller thaneb[DEn(0)2DEo(0)]. Otherwise, it is accepted,pro-
vided DE(t) lies within the interval defined by the current
window. This final condition makes our sampling efficient. It
allows us to control the range ofDE(t) sampled, while
maintaining the appropriate distribution of initial conditions.

In principle, this efficient sampling can be applied to any
nonequilibrium process when the appropriate distribution of
initial conditions is known.

B. Nonequilibrium statistics of the energy gap

Using this importance sampling, we have computed the
distribution of energy gaps at two times during the nonequi-
librium relaxation. In both cases, we harvested about 105

trajectories in each window.~The width of a window is about
30 kJ/mol.! In Fig. 2, we have plotted r(t)
52ln„P@DE(t)#…, an effective free energy in units ofkBT,
for times t1515 fs andt2530 fs. Equilibrium free energies
for the two solute states, corresponding tor(0) andr(`),
are plotted alongside for comparison. At botht1 andt2 , r(t)
is statistically indistinguishable from a best-fit parabola~also
plotted in Fig. 2! over the entire range considered. The sta-
tistics of the energy gap are thus Gaussian to a remarkable
extent, even for fluctuations 5000 times less probable than
the average value. Nonlinearities, which would result in an-
harmonicity ofr(t), are not apparent in our results.

While the nonequilibrium distributions we have com-
puted are remarkably Gaussian, their variances differ from
those of the equilibrium distributions. Specifically, the root
mean square fluctuation ofDE(t) away from its mean,
DE(t), is 28 kJ/mol at timet1 and 33 kJ/mol att2. At equi-
librium, ^d(DE)2&1/2 is 31 kJ/mol. These variances, or
equivalently the curvature ofr(t), reflect the susceptibility
of the system to an applied field. Their time dependence
therefore indicates that the Green’s functionG(t;t8), which
describes the response of the system at timet to a perturba-
tion at time t8, does not depend simply on the differencet

FIG. 2. Natural logarithm of the energy gap distributionP@DE(t)# at four
times during nonequilibrium relaxation following the solute’s dipolar tran-
sition. The rightmost curve~diamonds! corresponds tot50, i.e., the initial
equilibrium distribution. The leftmost curve~also diamonds! corresponds to
t5`, and is by symmetry a reflection of thet50 result about the vertical
axis. These two results were computed from long equilibrium trajectories.
The middle two curves correspond to intermediate timest1515 fs ~circles!
and t2530 fs ~squares!. These nonequilibrium results were obtained using
the importance sampling described in Sec. II. Best-fit parabolas~solid lines!
are plotted for each curve. Symbols are approximately the size of average
statistical uncertainties estimated through block averages.
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2t8. This nonstationary property reflects normal modes that
change in time.

The normal modes of aqueous response to an applied
electric field may be pictured most simply as those of a di-
electric medium. This approximation has been successful in
a broad range of applications, including Marcus’s theory of
electron transfer15 and in several theories of solvation
dynamics.16,17Dielectric response is very sensitive, however,
to boundary conditions. Indeed, the presence of a solute can
significantly alter the normal modes of a dielectric by expel-
ling the solvent from a region of space.18 Consequently, a
perturbation that changes the boundary conditions of a di-
electric in time will give rise to a nonstationary response. An
example of such a perturbation is a change in the solvent-
excluding volume of a solute.

In the solute transition considered by Skaf and Ladanyi,
the effective size and shape of the solute do not change. The
equilibrium density of oxygen atoms surrounding the dipolar
solute indicates that water molecules are distributed nearly
equivalently about the two atoms comprising the solute. The
density of hydrogen atoms, on the other hand, shows a sharp
discrepancy in solvation of the two solute atoms. As Skaf
and Ladanyi observed, water molecules form strong hydro-
gen bonds to the negatively charged atom that are broken
only rarely, resulting in close hydrogen–negative-atom con-
tacts (;2 Å!. These close contacts are of course not present
around the positively charged atom. Because the water mol-
ecules engaging in these hydrogen bonds are tightly bound,
their response to an electric field is expected to differ from
that of bulk water. When the dipole is inverted, the location
of this hydrogen bonding region changes suddenly, changing
also the boundary of the solvent region that behaves as a
dielectric. This change of boundary conditions can account
for the nonstationary nature of solvent response we have
computed, a possibility we examine in the next section.

III. GAUSSIAN FIELD THEORY

The Gaussian statistics of the energy gap described in
Sec. II suggest that the nonequilibrium responseS(t) may be
understood by applying linear response theory appropriately.
We consider here a harmonic model of solvent dynamics,
with normal modes that change upon solute excitation. Spe-
cifically, we imagine that when the solute exerts a weak elec-
tric field, the solvent may be represented as a dielectric, i.e.,
as a coarse-grained polarizable medium expelled from the
solute. However, when the solute exerts a strong electric
field, the solvent must be partitioned into an inner shell re-
gion ~‘‘IS’’ !, in which strong hydrogen bonds to the solute
are formed, and an external dielectric region~‘‘out’’ !. Using
this model, we analyze an experiment similar to that consid-
ered by Skaf and Ladanyi.~See Fig. 3.! For timest,0, the
solute exerts no electric field. At timet50, a collection ofn
solute dipolesm i is turned on, generating a nonequilibrium
response.

The dynamics of solvent relaxation in our model are
determined by the Hamiltonian

H5H0~$mr% IS!2(
i 51

n

m i•Fr i
2 (

rPIS
mr•Fr

1HD~$mr%out!, t.0, ~10!

where

H05
M

2 (
rPIS

@ uṁru21v2umr2mr
(0)u2#

1
1

2 (
rPIS

(
r8(Þr )PIS

mr•¹¹8
1

ur2r 8u
•mr8

1(
i 51

n

(
rPIS

m i•¹ i¹8
1

ur i2r 8u
•mr , ~11!

and

Fr52 (
r8 out

¹¹8
1

ur2r 8u
•mr8 . ~12!

Here,mr denotes the solvent dipole density at lattice position
r , which takes on discrete lattice values. In the inner shell
region, themr are harmonic oscillators with potential energy
1
2Mv2umr2mr

(0)u2, mimicking the effects of strong hydro-
gen bonds. Here,M is an effective mass for the oscillators,v
is their frequency, andmr

(0) is their average value in the
absence of other interactions.HD($mr%) is the Hamiltonian
for a coarse-grained homogeneous dielectric, expelled from
the solute and from the inner shell. The solute, inner shell,
and dielectric are coupled through dipole–dipole interac-
tions. For lattice cell separation vectorsrÞr 8, the dipole
interaction tensor has the usual form:

¹¹8
1

ur2r 8u
5

I

ur2r 8u3
23

~r2r 8!~r2r 8!

ur2r 8u5
, rÞr 8. ~13!

Because dipole density is coarse-grained in our model, the
interactions described by Eq.~13! are only approximately
correct. In the manipulations that follow, we take the singu-
larity at r5r 8 to be coarse grained over a single lattice cell:

¹¹8
1

ur2r 8u
5

4pr

3
I , r5r 8. ~14!

We solve for the dynamics of relaxation by first integrat-
ing out the dielectric. The time dependence of the resulting
force Fr on the remaining degrees of freedom is determined
by linear response.19 In detail,

FIG. 3. Example geometry for the model analyzed in Sec. III. The lightly
shaded lattice cell represents the solute. The inner shell region, adjacent to
the solute, is more darkly shaded. A few lattice cells belonging to the di-
electric are shown unshaded. Arrows depict coarse-grained dipole density.
For timest,0, the solute exerts no electric field and no inner shell exists. At
t50, a solute dipole is created, and an adjacent cell becomes the inner shell.
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Fr~ t !5Fr
(D)~ t !1E

0

t

dt8F(
i 51

n

X(D)~r ,r i ;t2t8!•m i

1 (
r8PIS

X(D)~r ,r 8;t2t8!•mr8~ t8!G . ~15!

The superscript~D! in Eq. ~15! denotes time evolution ac-
cording toHD($mr%out) alone. In particular,

X(D)~r ,r 8;t2t8!5 (
r9,r-out

¹¹9
1

ur2r 9u
•x (m)~r ,r 8;t2t8!

•¹-¹8
1

ur-2r 8u
, ~16!

where

x (m)~r ,r 8;t2t8!52b
d

d~ t2t8!
^mr~ t !mr8~ t8!&D ~17!

is the dielectric susceptibility. Exclusion from the solute and
inner shell region~collectively, the ‘‘in’’ region! modifies
this susceptibility from that of a uniform dielectric. In this
case, modification is given by Chandler’s formula18,20

x̃ (m)~r ,r 8;s!5x~r2r 8;s!2 (
r9,r- in

x̃~r2r 9;s!

•x̃ in
21~r 9,r-;s!•x̃~r-2r 8;s!, ~18!

where

x̃~r2r 8;s!5
e21

4pr Fd r ,r8I2
e21

4pre
¹¹8

1

ur2r 8u
G . ~19!

Here, f̃ (s) denotes the Laplace transform off (t):

f̃ ~s!5E
0

`

dt e2stf ~ t !. ~20!

The susceptibility in Eq.~19! has been shown to reproduce
the phenomenology of a dielectric continuum with dispersion
e(s) and dipole densityr.19 In Eq. ~18!, x̃ in

21 is the inverse of
the uniform susceptibility over the ‘‘in’’ region. Substituting
Eqs.~18! and~19! into the Laplace transform of Eq.~16! and
simplifying, we obtain

X̃(D)~r ,r 8;s!5
4pr

e21
d r ,r8I1¹¹8

1

ur2r 8u
2x̃ in

21~r ,r 8;s!.

~21!

In arriving at Eq.~21!, we have repeatedly used the identities

(
r9

¹
1

ur2r 9u
•x̃~r 9,r 8;s!5

e21

4pre
¹

1

ur2r 8u
~22!

and

(
r9 in

¹¹9
1

ur2r 9u
•x̃ in

21~r 9,r 8;s!

5
4pre

e21
x̃ in

21~r ,r 8;s!2S 4pr

e21D 2

ed r ,r8I . ~23!

The first identity may be proven using spatial Fourier trans-
forms. The second follows from the definition ofx̃ in

21 . Equa-
tions ~15! and~21! determine, in a computationally manage-
able form, the influence of dielectric response on the solute
and inner shell dipoles.

With the dynamics of the dielectric determined implic-
itly through Eq. ~15!, closed equations of motion for the
inner shell dipoles may be written:

Mm̈r~ t !52
]H0

]mr
1Fr~ t !. ~24!

SubstitutingH0 from Eq. ~11!, taking Laplace transforms,
and averaging over initial conditions yields

M ~s21v2!m̃r ~̄s!

5
Mv2

s
mr

~0!

1 (
r8PIS

F ~d r ,r821!¹¹8
1

ur2r 8u
1X̃(D)~r ,r 8;s!G•m̃r8~̄s!

1(
i 51

n F2¹¹ i

1

ur2r i u
1X̃(D)~r ,r i ;s!G• 1

s
m i . ~25!

Equation~25! determines a set of coupled linear equations

for the dynamics of the inner shell dipolesm̃r (̄s) that may be
solved by matrix inversion. Having thus evaluated the sol-
vent dynamics, we may compute the average energy gap
according to

D Ē̃~s!5(
i 51

n

m i•F (
rPIS

¹ i¹
1

ur i2r u
•m̃r ~̄s!2F̃r i

~̄s!G .
~26!

Using Eq.~26!, we have calculatedS(t) for the simple
solute and inner shell geometry depicted in Fig. 3. The solute
occupies a single lattice cell and, fort.0, possesses a dipole
m5m0â parallel to the lattice vectorâ. When this dipole is
created at timet50, the solvent dipole nearest to the nega-
tive end of the solute becomes the inner shell, withm(0)

5(2D)â, v51.331014s21 ~corresponding to a librational
frequency in water!, and a massM consistent with the rota-
tional inertia of a water molecule. We used a lattice spacing
of 5 Å and dielectric data for water determined by Neumann
from molecular dynamics.21 Laplace transforms in Eq.~26!
were inverted numerically, using the algorithm of Stehfest.22

S(t) so obtained is plotted in Fig. 4, as isC(t) for fluctua-
tions in the ground state.C(t) was computed for dipole sol-
vation energy fluctuations with the initial geometry in Fig. 3.
~This calculation is described in Ref. 18.! The qualitative
features of these functions, as predicted by our model, are
similar to those obtained from molecular dynamics. In par-
ticular, S(t) decays much more quickly thanC(t) during the
first 50 fs. Thereafter,S(t) andC(t) decay with roughly the
same time constant, reflecting slower modes of dielectric re-
laxation that are not strongly affected by the changing
boundary conditions.
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IV. CONCLUSIONS

We have shown that an example of apparently nonlinear
response can be understood in terms of linear response
theory, if correctly applied. For a dipolar transition in a small
solute in water, the distribution of energy gaps is Gaussian
during nonequilibrium relaxation, even for large fluctuations
away from the mean. We have demonstrated this fact using a
novel importance sampling of nonequilibrium dynamics. The
time-dependent variance of energy gaps evidently reflects the
cleavage and formation of hydrogen bonds to the solute. The
principal effect of this rearrangement is to modify the bound-
aries of solvent regions that are inherently linearly respond-
ing. Because normal modes change as a result, the expecta-
tion that S(t)5C(t) is no longer correct, even though the
system does respond linearly. We have shown that a simple,
harmonic model can in fact reproduce the qualitative features
of both equilibrium fluctuations and nonequilibrium relax-
ation.

Note added in proof. Because dynamics are linear in our
Gaussian field theory, the corresponding nonequilibrium dis-
tribution of energy gaps is completely characterized by its
mean@Eq. ~26!# and variance. We have determined this vari-
ance for the geometry shown in Fig. 3 using techniques simi-
lar to those employed above. During the relaxation induced
by the solute’s electric field and changing boundary condi-
tions,@(dDE)2(t)#1/2 for the simple model changes by more
than 100% of its initial value.23 By contrast, the variance
determined from our molecular dynamics simulations
changes by only 10% over this period.~See Fig. 2.! Our
simple model thus exaggerates the nonstationary character of
the solvation dynamics. The variance of energy gap fluctua-
tions is not, however, truly a force constant for energy gap
dynamics, and does not directly determineS(t). Rather,
these dynamics are governed by a complicated collection of
interactions: couplings among dipole densities in our Gauss-
ian field theory, and long-ranged interatomic forces in our
molecular dynamics simulations. We therefore expect that a

more detailed Gaussian theory can account for the apparently
nonlinear response without a large change in the variance of
energy gap fluctuations.
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APPENDIX

In order to make large changes in momenta without cor-
respondingly large changes in kinetic energy, we generate
path displacements in a two-step process. First, a random
displacementdwi is added to the old mass-weighted mo-
mentawi

o(t) of each atomi at time t, where

wi5pi /Ami . ~A1!

The dwi are chosen such that the total kinetic energy,

Ko5
1

2 (
i

uwi u2, ~A2!

is unchanged, and the constraints of vanishing total linear
momentum and rigid intramolecular bonds are maintained.
~An algorithm for generating such a displacement is de-
scribed in the Appendix of Ref. 14.! Second, a new kinetic
energy is selected using a Monte Carlo procedure. A change
in kinetic energy,dK, is chosen at random from a Gaussian
distribution. The trial valueK t5Ko1dK is accepted with
probability

pacc5min@1,P~K t!/P~Ko!#, ~A3!

where

P~K !}e2bKK ~nf /2!21 ~A4!

is the kinetic energy equilibrium distribution for a system
with nf degrees of freedom in contact with a heat bath at
inverse temperatureb. The mass-weighted momenta are
then scaled to give the resulting kinetic energyKn:

wi
n5S Kn

KoD 1/2

~wi
o1dw!. ~A5!

The result of this process is that a new path is generated from
an old one with relative probability

Pgen~x0
o→x0

n!

Pgen~x0
n→x0

o!
5exp@2b~Kn~ t !2Ko~ t !!#, ~A6!

and with arbitrarily large displacementsdwi . Because the
potential energy is unchanged at timet, and because New-
ton’s equations of motion conserve total energy, Eq.~A6! is
equivalent to Eq.~8! in the text.

FIG. 4. S(t) ~solid line! andC(t) ~dashed line! determined by our Gaussian
field theory, as functions of timet following the solute transition depicted in
Fig. 3.S(t) was computed from Eqs.~1! and~26!. C(t) was computed using
Eq. 5.7 of Ref. 19.
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