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We have devised a novel importance sampling method for nonequilibrium processes. Like transition
path sampling, the method employs a Monte Carlo procedure to confine or bias the search through
trajectory space. In this way, molecular dynamics trajectories consistent with the nonequilibrium
dynamics of interest are generated efficiently. Using results of this sampling, we demonstrate that
statistics of the energy gap between a solute’s electronic states are Gaussian throughout the
dynamics of nonequilibrium solvation in water. However, these statistics do change in time,
reflecting linear response that is nonstationary. Discrepancies observed between the dynamics of
nonequilibrium relaxation and of equilibrium fluctuations are thus explained. We analyze a simple
Gaussian field theory that accounts for this nonstationary respons@000 American Institute of
Physics[S0021-96080)52137-0

I. INTRODUCTION
C(t)= (SAE(t) SAE(0)) .

This article describes a method for carrying out impor- ((5AE)?)
tance sampling of nonequilibrium trajectories. It thus shows
how biasing techniques commonly employed in the realm oHere, angled brackets denote an equilibrium average with the
equilibrium statistics, such as umbrella sampling, can be exsolute in either its ground or excited electronic St#&E is
tended to the dynamical realm. The method we present mage fluctuation of the energy gap away from its average value
be applied to any nonequilibrium process for which a distri-at equilibrium, i.e. SAE=AE—(AE). The near equivalence
bution of initial conditions is known. An important class of of nonequilibrium relaxation dynamics and those of equilib-
such processes is the relaxation following a sudden change um fluctuations suggests that linear response is approxi-
the Hamiltonian of a system that is initially at equilibrium. mately valid for these solutions. Furthermore, the statistics of

In developing this sampling technique, we are motivatedthe energy gap at equilibrium, as determined by importance
by an interest in the specific nonequilbrium phenomenorsampling in computer simulations, are remarkably
known as solvation dynamics, and it is with this process Gaussiarf. The corresponding harmonic free energy also
that we illustrate our general approach. A solvation dynamicsuggests the validity of linear response. Until now, the sta-
experiment measures the response of a polar solvent to aistics of the energy gap during nonequilibrium relaxation
electronic transition of a solute. Because such transitionfave not been determined by importance sampling. Conse-
typically involve changes in the solute’s charge distribution,quently, these time-dependent distributions have been com-
surrounding solvent molecules are subject to large net forcgsuted only for small fluctuations of the energy gap away
and reorganize quickly. The dynamics of this response ifrom its meart.

2

monitored through a function Although linear response appears to describe solvation
dynamics for some systems, several workers have noted that
AE(t)—AE(x) S(t) can differ significantly fromC(t) for others®=1° par-
St)=—=———— (N ticularly those involving hydrogen-bonding solvents. A ma-

AE(0)—AE(=) jor conclusion of our work is that these differences are not

H AE is th betw d and i ecessarily due to a failure of linear response or of Gaussian
ere, IS the energy gap between ground and exCit€lyayigtics. Indeed, as we show explicitly for a model exam-
states, determined experimentally by fluorescencg

; §4 Overbars denot ibri ned by Skaf and Ladanyinonequilibrium relaxation is gov-
Spectroscopy:” Lverbars denote a nonequiiiorium average,q q largely by Gaussian statistics, but these statistics are
i.e., a Boltzmann-weighted sum over initial conditions with

. hot stationary. To an excellent approximation, it is the devia-

the solqte in its ground state and with dynam|c§ evolved Mion from stationarity that produces the differences between
the excited stateS(t) thus measures the normalized relax- S(t) andC(t)

ation of the energy gap to its new equilibrium validg (). In determining the statistics of the energy gap during
_ Remarkably, it has been observed in molecular dynamicgq)ent response, we make use of an importance sampling in
simulations thatS(t) is often nearly identical to an equilib- aiectory space. The method is analogous to transition path

i i I 1 ’5 . . . . .

rium time correlation functioft: sampling of rare but important events, in that trajectories are
harvested using a Monte Carlo procedure, as described in

dElectronic mail: chandler@cchem.berkeley.edu Sec. II. In this procedure, trajectories are displaced by chang-
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ing atomic momenta at a particular time and integrating 1 ' '
equations of motion to obtain a different but similar path.
Trial paths so obtained are accepted with a probability that 0.8 |
reproduces a desired distribution of trajectories. This scheme |}
thus allows a bias or constraint to be applied toghmpling !
of trajectories evolving in time with the system’s natural, _ 06} \ .
unbiased dynamics. Using such constraints, we compute theS \
probability of observing energy gap values over a wide range &
during nonequilibrium relaxation. ’ N
The distributions of the energy gap we determine, also =~
described in Sec. Il, are remarkably Gaussian throughout the  ¢.2 ~—
solvation dynamics. The principal conclusions we draw from ~~
this fact can be captured by a simple Gaussian field theory,
as illustrated in Sec. lll. In this theory, the solvent environ- °0 ' 0.2 04 0.6
ment is represented as a coarse-grained dielectric material, t(ps)
exc_ept where hydr.Oge.n bOI’ld_S are fo.rmed oa SO.IUte' In S'.JChIG. 1. Nonequilibrium responsg(t) (solid line) and equilibrium time
reglons, the polarization osplllates _In a harmonic pOtentl_acorrelationC(t) (dashed lingas functions of timé for a dipolar solute in
that simulates these strong interactions. Upon solute exCitggater. 5(t) was computed from 5000 nonequilibrium molecular dynamics
tion, the boundaries of linearly responding solvent regionsrajectoriesC(t) was computed from a single, 1 ns trajectory at equilibrium.
change, so that the normal modes of solvent response are

/

nonstationary.

Such an umbrella potential does not, however, directly
Il. NONEQUILIBRIUM MOLECULAR DYNAMICS aid in the calculation of the nonequilibrium distribution. The
A. Sampling trajectories artificial force that is introduced bg(AE) alters the dynam-

o ~ics of relaxation, and correcting for this effect is not straight-

The nonequilibrium average of the energy gap duringforward. Rather than apply such a physical bias force to the
relaxation to equilibrium may be computed using straightfor-system, we instead perform umbrella sampling in trajectory
ward molecular dynamics. Long equilibrium trajectories withgpace in a manner analogous to the window sampling de-
the solute in its ground electronic state are first used to genscrihed above. The range of energy gaps at tiisedivided
erate initial configurations. For each configuration, the solutgnto overlapping windows, defined by intervalsE®.
charge distribution is then switched instantaneously, and th%AE(t)<AEQaX. By computingP[ AE(t)] in each window
energy gap is calculated as the solvent relaxes to equilibriurgng requiring that the distribution is continuous at the win-
with the new electric field. Averaging over many of thesegow poundaries, we may efficiently sample a wide range of
trajectories yield\ E(t). Using this scheme, we have repro- AE(1).
duced the results of Skaf and Ladanyi for a dipolar diatomic e harvest nonequilibrium trajectories in each window
in ||qU|d water whose ground and excited states are relatem a Monte Carlo fashion, as is done in transition pa’[h sam-
by dipole inversion. The details of our simulations are nearlypjing of rare but important event$-2 Specifically, a trial
identical to those in Ref. 8 for a small soluteith opposite  trajectory is generated from an existing one and is accepted
charges of 0.6 separated by-3.1 A) in TIP4P water. Both  \ith a probability determined by the relative weight of the

S(t) and C(t) are plotted in Fig. 1. Nonequilibrium relax- two trajectories. In detail, the weight of a trajectory in win-
ation indeed occurs much more quickly than is predicted byowi is

the dynamics of equilibrium fluctuations. ) .

The above scheme of harvesting nonequilibrium trajec- " (Xo) €™ #*PhO[AE(t)] (3
tories does not allow efficient cglculation of the distribution o B X0 BAEOZ (D[ AE(1)], 4)
of energy gapsP[AE(t)]. In particular, only the most prob-
able values ofAE(t) are sampled frequently, while values Here,Hy(X,) andHg(X,) are Hamiltonians with the solute in
lying in the wings of the distribution are rarely observed. Inits ground and excited electronic states, respectively.
sampling the corresponding equilibrium distribution, N)[AE(t)] is the characteristic function for windoiy
P[AE(0)], this problem may be overcome by umbrella sam- : i i
pling. An artificial potential$(AE) is introduced, favoring hOFAE(D) = L 'fAEﬁ“%'_‘<AE(t)<AE$“2”‘X’ 5
improbable values aAE, so that the range of energy gaps is [AE(D]= 0, otherwise. (5
sampled with nearly even probability. Correcting for the bias
imposed by ¢(AE) simply involves multiplication by a In Eq.(4), x; denotes the phase space point of the system at
Boltzmann factor, eXgB(¢(AE))], whereB 1=kgT istem-  time t. Because the molecular dynamics we consider are
perature multiplied by Boltzmann's constant. In practice,Newtonian, the initial phase space poigt determines the
umbrella sampling is often accomplished by dividing thestate of the system at all later times. The trajectory weight
range of AE into overlapping windows. The distribution of () is thus written as a function solely a&f.
AE is measured in each window, and the entire distribution ~ To sample trajectories consistent with the weight in Eq.
is constructed by requiring th&[ AE(0)] is continuous. (4), it is sufficient to satisfy the condition of detailed balance,
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Pgen(X8—>X8) Pacc(xgﬁxg)f(i)(xg) 12 l l ' l l
= Pger(xg_»(g)Pact,(xg_})(g)f(i)(xg)- (6)
10
Here, Pge{Xg—Xp) is the probability of generating a trial
trajectory with initial conditionsxg from an old trajectory 8
with initial conditionsxg. P..{Xg—Xg) is the probability g
that this new trajectory will be accepted. We use the Me- 2 5
tropolis acceptance probability, £
fO(x0) Pged Xg—X3) 4
Pacd X3—x3) =min| 1,——— L2 |, (7)
FO(x3) Pged xg—x5) )
which satisfies detailed balance by construction and does not
require knowledge of the proportionality constant in E&). %50 150 50 50 150 250
In our Monte Carlo sampling, new trajectories are gen- AE(t) (kJ/mol)

erated from old ones by an effective displacement in trajec-

tory space, using shooting moves similar to those describeff®: 2: Natral logarithm of the energy gap distributBPAE(t)] at four
times during nonequilibrium relaxation following the solute’s dipolar tran-

in Ref. 14. A time step along the existing pth is firSt chosenion. The rightmost curvédiamonds corresponds to=0, i.e., the initial
at random. The momentum of each atom is shifted at thaéquilibrium distribution. The leftmost curv@lso diamondscorresponds to

time step by an amounip; . Equations of motion are then t==, and is by symmetry a reflection of the=0 result about the vertical

integrated forwards and backwards in time, yielding a dis_axis. These two results were computed from long equilibrium trajectories.
' The middle two curves correspond to intermediate tiesl5 fs (circles

tinct trial path. . . . andt,=30 fs (squares These nonequilibrium results were obtained using
In the present work, the trajectories of interest are onlythe importance sampling described in Sec. II. Best-fit paratista line9

tens of femtoseconds in duratioﬁThe deviation ofS(t) are plotted for each curve. Symbols are approximately the size of average
from C(t) is greatest at these tim¢sConsequentIy, Iarge statistical uncertainties estimated through block averages.

momentum displacements are necessary to generate trial tra-

jectories that are not too similar to existing ones. If #®

are too small, sampling of statistically independent trajecto- o . o ) )

ries will occur slowly. However, if largép; are drawn from  In principle, this efficient sampling can be applied to any

a symmetric distribution, high kinetic energies will often re- Nonequilibrium process when the appropriate distribution of

sult. Trial paths will then be frequently rejected due to smallinitial conditions is known.

values of exfj — BH¢(xg)]. We avoid this sampling problem B Nonequilibrium statistics of the energy gap
by effectively selecting thép; from an asymmetric distribu- , o ,
tion, as described in the Appendix. The corresponding path YSing this importance sampling, we have computed the

generation probabilities automatically reproduce a Boltz-distribution of energy gaps at two times during the nonequi-

mann distribution of initial conditions: Iibr.ium r.elagation. In. both cases, we har\{ested'abm?t 10
trajectories in each windowThe width of a window is about

Pger X3—X0) 30 kJ/mol) In Fig. 2, we have plotted p(t)
%=exr{—ﬂ[?—{e(x8)—7—{e(x8)]]. (80 =—In(P[AE(t)]), an effective free energy in units &§T,
Pger Xo—Xo) for timest; =15 fs andt,= 30 fs. Equilibrium free energies

for the two solute states, correspondingpt@) andp(e),
are plotted alongside for comparison. At botrandt,, p(t)
Pocd Xg— X0 = min[l,eB[AE“(O)fAE°(O)]h(i)[AEn(t)]_ is statisFicaI_Iy indistinguishablle from a best-fjt parab@kso
(9) plotted in Fig. 2 over the entire range considered. The sta-
tistics of the energy gap are thus Gaussian to a remarkable
Here, AE"(0) andAE®(0) denote the energy gaps at time extent, even for fluctuations 5000 times less probable than
zero for the new and old trajectories, respectively. We havehe average value. Nonlinearities, which would result in an-
assumed thah[AE(t)]=1, i.e., that the initial path lies harmonicity ofp(t), are not apparent in our results.
within window i. While the nonequilibrium distributions we have com-
In practice, this sampling of nonequilibrium paths fol- puted are remarkably Gaussian, their variances differ from
lows a simple algorithm. From an existing path, momenta arehose of the equilibrium distributions. Specifically, the root
displaced at a randomly selected time, and a trial trajectory isnean square fluctuation cAE(t) away from its mean,
obtained by integrating equations of motion. By E8), the  AE(t), is 28 kJ/mol at time,; and 33 kJ/mol at,. At equi-
trajectory is rejected if a random number between 0 and 1 ibrium, (S(AE)?)Y? is 31 kJ/mol. These variances, or
smaller tharePlAE(©)-AEA0)] Otherwise, it is acceptegro-  equivalently the curvature gf(t), reflect the susceptibility
vided AE(t) lies within the interval defined by the current of the system to an applied field. Their time dependence
window. This final condition makes our sampling efficient. It therefore indicates that the Green’s functi@it;t’), which
allows us to control the range okE(t) sampled, while describes the response of the system at tineea perturba-
maintaining the appropriate distribution of initial conditions. tion at timet’, does not depend simply on the differerice

Trial paths must therefore be accepted according to
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—t’. This nonstationary property reflects normal modes that /
change in ti o~ f \
ge in time.
The .normal modeg of aqueous response to an appligd / v /
electric field may be pictured most simply as those of a di-
electric medium. This approximation has been successful in | _» / t\ f
a broad range of applications, including Marcus’s theory of
electron transfé? and in several theories of solvation ) )
d icsté17 Dielectric response is verv sensitive. however FIG. 3. Example geometry for the model analyzed in Sec. Ill. The lightly
ynamics. - p y ! 'shaded lattice cell represents the solute. The inner shell region, adjacent to
to boundary conditions. Indeed, the presence of a solute cafe solute, is more darkly shaded. A few lattice cells belonging to the di-
significantly alter the normal modes of a dielectric by expel-electric are shown unshaded. Arrows depict coarse-grained dipole density.
ling the solvent from a region of spa&%ConsequentIy a Fortimest<0, the solute exerts no electric field and no inner shell exists. At
. . ) 1=0, a solute dipole is created, and an adjacent cell becomes the inner shell.
perturbation that changes the boundary conditions of a di-
electric in time will give rise to a nonstationary response. An
example of such a perturbation is a change in the solvent- n
excluding volume of a solute.  H=EH{Mbe) — 2 miFr— 2 me-F
In the solute transition considered by Skaf and Ladanyi, i=1 rels
the effective size and shape of the solute do not change. The
equilibrium density of oxygen atoms surrounding the dipolar
solute indicates that water molecules are distributed nearlywhere
equivalently about the two atoms comprising the solute. The
density of hydrogen atoms, on the other hand, shows a sharp  H,=— > [|m,|?+ w?m,— m(%)|2]

+Ho({M}ow), t>0, (10

discrepancy in solvation of the two solute atoms. As Skaf 2 (cls

and Ladanyi observed, water molecules form strong hydro- 1 1

gen bonds to the negatively charged atom that are broken + > 2 2 mr«VV’m-mr,

only rarely, resulting in close hydrogen—negative-atom con- relSti(#nels

tacts (~2 A). These close contacts are of course not present n 1

around the positively charged atom. Because the water mol- DTN A m,, (11)
S . . Mi Vi =

ecules engaging in these hydrogen bonds are tightly bound, I=1rels !

their response to an electric field is expected to differ fromgnd

that of bulk water. When the dipole is inverted, the location

of this hydrogen bonding region chang.es suddenly, changing F=— E vy’ 1 —m,. . (12)

also the boundary of the solvent region that behaves as a r' out Ir—r'|

dielectric. This phange of boundary conditions can accounHere,mr denotes the solvent dipole density at lattice position
for the nonstatlon_a_ry nature of _solv_ent response we havp, which takes on discrete lattice values. In the inner shell
computed, a possibility we examine in the next section. region, them, are harmonic oscillators with potential energy
M w?|m,—m, (]2, mimicking the effects of strong hydro-
gen bonds. HeréM is an effective mass for the oscillatots,
is their frequency, andn,(?) is their average value in the
IIl. GAUSSIAN FIELD THEORY absence of other interactiorEy({m,}) is the Hamiltonian
for a coarse-grained homogeneous dielectric, expelled from
The Gaussian statistics of the energy gap described ithe solute and from the inner shell. The solute, inner shell,
Sec. Il suggest that the nonequilibrium respoB&g may be and dielectric are coupled through dipole—dipole interac-
understood by applying linear response theory appropriatelftions. For lattice cell separation vectorstr’, the dipole
We consider here a harmonic model of solvent dynamicsinteraction tensor has the usual form:
with normal modes that change upon solute excitation. Spe-
cifically, we imagine that when the solute exerts a weak elec- gy 1 _ ' _3(
tric field, the solvent may be represented as a dielectric, i.e., r=r'|  r=r'|3 lr—r’|®
as a coarse-grained polarizable medium expelled from thEecaus,e dipole density is coarse-grained in our model, the
solute. However, when the solute exerts a strong electric P y 9 '

field, the solvent must be partitioned into an inner shell re_lnteractlons described by Eq13) are only approximately

gion (“IS” ), in which strong hydrogen bonds to the solute co.rrect. Irltr,]e manipulations that follow, We. take th? smgu.-
. : , " : larity atr=r’ to be coarse grained over a single lattice cell:
are formed, and an external dielectric regi6out” ). Using

this model, we analyze an experiment similar to that consid- 1 47p

ered by Skaf and LadanyiSee Fig. 3. For timest<0, the Vv’ 1T 3

solute exerts no electric field. At tinte=0, a collection ofn r=r’]

solute dipolesu; is turned on, generating a nonequilibrium We solve for the dynamics of relaxation by first integrat-

response. ing out the dielectric. The time dependence of the resulting
The dynamics of solvent relaxation in our model areforce F, on the remaining degrees of freedom is determined

determined by the Hamiltonian by linear respons®. In detail,

,r#r’. (13

I, r=r’. (14
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n The first identity may be proven using spatial Fourier trans-

;l XO(r,rt=t")- p, forms. The second follows from the definition'gf,*. Equa-
tions (15) and(21) determine, in a computationally manage-
able form, the influence of dielectric response on the solute

. (15  and inner shell dipoles.

With the dynamics of the dielectric determined implic-
itly through Eq. (15), closed equations of motion for the
inner shell dipoles may be written:

t
F(t)=FP(t)+ f dt’
0

+ > XOr rit—t")-m,(t')
r'elS

The superscriptD) in Eq. (15 denotes time evolution ac-
cording toHp({mM,}ou) @lone. In particular,

. IH
XO(rrt—t)= > VV'—— y™(r r":t—t’) MM, (1) = — —— + F,(1). (24)
r”,r”’out |I’—r | (9mr
I SubstitutingH, from Eq. (11), taking Laplace transforms,
VIV "=’ (16 and averaging over initial conditions yields
where M (s2+ w?)m.(s)
2
Mrrt—t')=— m,(t)m, (t") (1 _Mo®

XM == B gy (MOt @D =
is the dielectric susceptibility. Exclusion from the solute and
inner shell region(collectively, the “in” region) modifies + 2 (8, —1)VV' +XO)r,r":s) ~r~nr,(s)
this susceptibility from that of a uniform dielectric. In this r'els ' [r—r’
case, modification is given by Chandler’s formi% n L L

_ B + 2 | =VVi——+XO(r,ri:9) |- Z . (25)

XM(r,rs)=x(r—r';s)— X x(r—r";s) =1 [r=ri S

r”,r/”in
- _ Equation(25) determines a set of coupled linear equations
Xin (171738) X (" =1738), 18 forthe dynamics of the inner shell dipoles(s) that may be
where solved by matrix inversion. Having thus evaluated the sol-
vent dynamics, we may compute the average energy gap
~ o €~ e-1__ 1 according to
x(r—r ,s)——477p o 47TP€VV | (19 )
pr— 1 ~ _
Here, f(s) denotes the Laplace transform fft): AE(S)=izl Mi rEIS ViV [ -my(s)—F (s)|.
= < i
3 . (26)
f(s)=f dt e St (t). (20)
0

Using Eq.(26), we have calculate®(t) for the simple

The susceptibility in Eq(19) has been shown to reproduce solute and inner shell geometry depicted in Fig. 3. The solute
the phenomenology of a dielectric continuum with dispersiorPccupies a single lattice cell and, for 0, possesses a dipole
€(s) and dipole density.*° In Eq. (18), y;,* is the inverse of 4= Hod pargllel to the lattice vectoa. When this dipole is
the uniform susceptibility over the “in” region. Substituting created at time=0, the solvent dipole nearest to the nega-
Egs.(18) and(19) into the Laplace transform of E4L6) and  tive end of the solute becomes the inner shell, wiif?)
simplifying, we obtain =(2D)a, »=1.3x10"s" ! (corresponding to a librational
frequency in water and a mas$/ consistent with the rota-
_;(_71“ r:s) tional inertia of a water molecule. We used a lattice spacing
lr—r/| 70T of 5 A and dielectric data for water determined by Neumann
(21  from molecular dynamic$: Laplace transforms in Eq26)
were inverted numerically, using the algorithm of Stehfést.
S(t) so obtained is plotted in Fig. 4, as &t) for fluctua-
e—1 1 tions in the ground stat&(t) was computed for dipole sol-

~ 41
KO (1 r':s)= e_—‘i(swl LYV

In arriving at Eq.(21), we have repeatedly used the identities

v ox(rrs)= o - (220 vation energy fluctuations with the initial geometry in Fig. 3.
=] mPe |r—r’| (This calculation is described in Ref. 18The qualitative
and features of these functions, as predicted by our model, are

similar to those obtained from molecular dynamics. In par-
, Lo~ ticular, S(t) decays much more quickly tha®(t) during the
> Vv Xin (1,1739)

first 50 fs. Thereafter$(t) andC(t) decay with roughly the

5 same time constant, reflecting slower modes of dielectric re-
_Ampe~ ., 4mp laxation that are not strongly affected by the changing
" e—1Xn (r.r's) ( _1> €5l (23 boundary conditions.

N ——
rin |I’ r |
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1 . . more detailed Gaussian theory can account for the apparently
nonlinear response without a large change in the variance of
energy gap fluctuations.
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FIG. 4. S(t) (solid line) andC(t) (dashed lingdetermined by our Gaussian APPENDIX
field theory, as functions of timefollowing the solute transition depicted in

Fig. 3.5(t) was computed from Eq$l) and(26). C(t) was computed using In order to make large changes in momenta without cor-
Bq. 5.7 of Ref. 19. respondingly large changes in kinetic energy, we generate
path displacements in a two-step process. First, a random
displacementéw; is added to the old mass-weighted mo-
mentaw’(t) of each atoni at timet, where

We have shown that an example of appargntly nonlinear w=p, /\/ﬁ. (A1)
response can be understood in terms of linear response
theory, if correctly applied. For a dipolar transition in a small The éw; are chosen such that the total kinetic energy,
solute in water, the distribution of energy gaps is Gaussian 1
during nonequilibrium relaxation, even for large fluctuations  K°=_— 2 w2, (A2)
away from the mean. We have demonstrated this fact using a 25
novel importance sampling of nonequilibrium dynamics. Theis unchanged, and the constraints of vanishing total linear
time-dependent variance of energy gaps evidently reflects th&omentum and rigid intramolecular bonds are maintained.
cleavage and formation of hydrogen bonds to the solute. Thgan algorithm for generating such a displacement is de-
principal effect of this rearrangement is to modify the bound-scribed in the Appendix of Ref. 14Second, a new kinetic
aries of solvent regions that are inherently linearly reSpondenergy is selected using a Monte Carlo procedure. A change
ing. Because normal modes change as a result, the expecia-kinetic energy,5K, is chosen at random from a Gaussian
tion that S(t)=C(t) is no longer correct, even though the distribution. The trial valueK!=K°+ 6K is accepted with
system does respond linearly. We have shown that a simpl@robability
harmonic model can in fact reproduce the qualitative features .
of both equilibrium ﬂuctuatiorF:s and nongquilibrium relax- Pace=min[ 1,P(KY)/P(K®)], (A3)
ation. where

No.te a(_jded in proofBecause dyngmlcs are Im_gar. in our P(K)xe KK (Nii2-1 (A4)
Gaussian field theory, the corresponding nonequilibrium dis-
tribution of energy gaps is completely characterized by itss the kinetic energy equilibrium distribution for a system
mean[Eq. (26)] and variance. We have determined this vari-with n; degrees of freedom in contact with a heat bath at
ance for the geometry shown in Fig. 3 using techniques simiinverse temperaturgd. The mass-weighted momenta are
lar to those employed above. During the relaxation inducedhen scaled to give the resulting kinetic enei
by the solute’s electric field and changing boundary condi- (

IV. CONCLUSIONS

n

1/2
K—) (Wo+ dw). (A5)

o]

tions,[ (SAE)?(t)]*'? for the simple model changes by more wh=
than 100% of its initial valué® By contrast, the variance

dﬁtermlneg frolm 183 molet;:]glar Qynam|c|§ Slmlé)l""t'onS’The result of this process is that a new path is generated from
changes Dy only 6 over this perio(See Fig. 2. Our a? old one with relative probability

simple model thus exaggerates the nonstationary character o
the solvation dynamics. The variance of energy gap fluctua- Pge,{x8—>x3)
tions is not, however, truly a force constant for energy gap =
dynamics, and does not directly determiét). Rather,
these dynamics are governed by a complicated collection aind with arbitrarily large displacemensw; . Because the
interactions: couplings among dipole densities in our Gausspotential energy is unchanged at timjeand because New-
ian field theory, and long-ranged interatomic forces in ourton’s equations of motion conserve total energy, &®§) is
molecular dynamics simulations. We therefore expect that aquivalent to Eq(8) in the text.

exd —B(K"() —K(1)], (A6)

Pger Xg—X0)
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